Effects of Laying Hen Manure Application Rate on Water Quality
نویسندگان
چکیده
Excessive use of animal manure on agricultural lands can impact the quality of surface and groundwater resources. A three–year study (1998–2000) was conducted on nine 0.4–ha plots and on six 2.1–m 2 lysimeters to investigate the effect of two nitrogen (N) application rates from laying hen manure and one N application rate from urea ammonium nitrate (UAN) fertilizer on surface and groundwater quality. Experimental treatments included N application rates of 168 kg–N/ha from UAN fertilizer, and 168 kg–N/ha and 336 kg–N/ha from laying hen manure to corn plots. Subsurface drain and runoff water samples were collected and analyzed for nitrate–nitrogen (NO3–N) and orthophosphate (PO4–P). Results of this study indicate that application of hen manure at 336 kg–N/ha resulted in the highest average NO3–N and PO4–P concentrations in subsurface drain water in comparison with the application of 168 kg–N/hafrom either hen manure or UAN fertilizer. Application of manure at 168 kg–N/ha resulted in significantly lower NO3–N loss with subsurface drain water in comparison with NO3–N loss from the other two N treatments. Manure application at a rate of 336 kg–N/ha resulted in a higher concentration of PO4–P in surface runoff in comparison with manure application rate of 168 kg–N/ha. Application rate of manure had no significant effect on NO3–N concentration in surface runoff water. In addition, higher PO4–P losses were observed with surface runoff water in comparison with subsurface drain water. The use of manure at both low and high application rates in field plots resulted in significantly higher corn and soybean yields in comparison with the use of UAN fertilizer. Results of this study led to the conclusions that application of hen manure at a lower rate of 168 kg–N/ha can result in higher crop yields and minimal water pollution in comparison with same amount of UAN fertilizer or higher manure application rate.
منابع مشابه
Ammonia and Carbon Dioxide Emissions vs. Feeding and Defecation Activities of Laying Hens
This study characterizes dynamic ammonia (NH3) and carbon dioxide (CO2) emissions associated with feeding and defecation activities of laying hens. Manure handling scheme used was reflective of commercial manure-belt house operation. Four dynamic emission chambers and measurement system was developed, featuring continuous measurement of the following variables for each chamber: (a) NH3 concentr...
متن کاملAmmonia Emissions of Laying Hens as Affected by Stocking Density and Manure Accumulation Time
Different stocking densities (SDs) or space allocations are being practiced in commercial laying-hen operations as an attempt to improve hen welfare. Information concerning the impact of SD on accumulated manure properties (e.g., moisture content) and thus ammonia (NH3) emissions is limited in the literature. Bird SD affects the amount of manure per unit of accumulated manure surface area, whic...
متن کاملComparison of Direct vs. Indirect Ventilation Rate Determination for Manure Belt Laying Hen Houses
Direct measurement of ventilation rate in livestock housing can be a formidable task due to uncontrollable variations in fan and system performance as caused by factors such as operation static pressure, fan belt condition, and dust accumulation on shutters and blades. Indirect, CO2-balance method offers a potentially viable, more flexible alternative to estimating ventilation rate. The reliabi...
متن کاملAmmonia Emissions Rate from Composted Laying Hen Manure
During the past five years we have developed three emission calorimeters (EC) that can be used to evaluate mass generation and utilization of gasses. We have tested various treatments that significantly reduced ammonia generation by laying hen manure (Harrison and Koelkebeck, 2002; 2003). Disciplines Agriculture | Bioresource and Agricultural Engineering | Poultry or Avian Science Comments Post...
متن کاملEvaluation of Treatment Agents and Diet Manipulation for Mitigating Ammonia and Odor Emissions from Laying Hen Manure
A laboratory air emission evaluation system consisting of eight emission vessels (19 L each) has been developed and used to investigate the effects of bio/chemical agents or feed additives on ammonia and odor emissions from poultry manure. A novel approach was used to evaluate volatile organic compounds (VOCs) and odor emissions, featuring air sampling with carboxen/PDMS 85 micrometer SPME fibe...
متن کامل